Dirt To Soil

As Producers We Are Told That We Need To Produce More To Feed An Ever-growing Population

 We are told to focus on YIELD and POUNDS.

So, We Produce, Corn

Soybeans

Wheat, All Monocultures

Livestock In Confinement

- As farmers we tend to think that we have no control over our soils, our water or the nutrients we have available
- We think that what we have is what we have.

BUT IS IT?

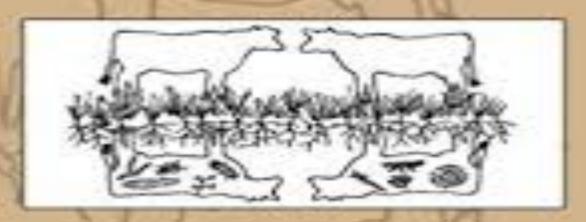
Can We Regenerate Soils?

•Can we take control of our own destiny?

I had come to accept a degraded resource

Symptoms of a Degraded Resource

- Lack of Moisture
- Poor Fertility
- Compaction
- Weeds
- Low Yields
- High Input Costs
- Too Much Moisture
- Salinity


- Disease
- Pests
- Little: Too Much/Too Little
- Labor
- Erosion
- Poor Infiltration

I needed to "unlearn" and "relearn"

This sent me on a 25+ year journey of "Dirt to Soil"

A Soil Owner's Manual

How to Restore and Maintain Soil Health

Jon Stika

Conventional Practices

1994 Purchased A 750 No-till Drill

LESSON #1

•Least amount of mechanical disturbance possible.

1994 First Year No-Till

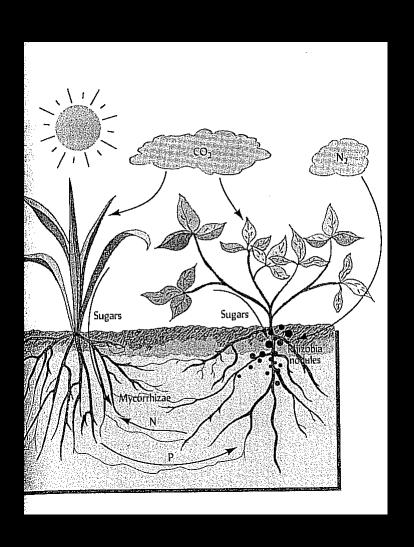
1994 Added Peas for N Fixation

Nitrogen

 Approximately 34,000 Tons of Atmospheric Nitrogen Above Every Acre.

 Is There Any Reason Why We Convert Fossil Fuels Into Nitrogen?

1995 Hail


Lesson #2

Armor on the soil.

Winter Triticale & Hairy Vetch

Plants Interacting with Mycorrhizal Fungi

 Assists with P uptake from the soil

 Moves P from the nonlegume plant to the legume plant

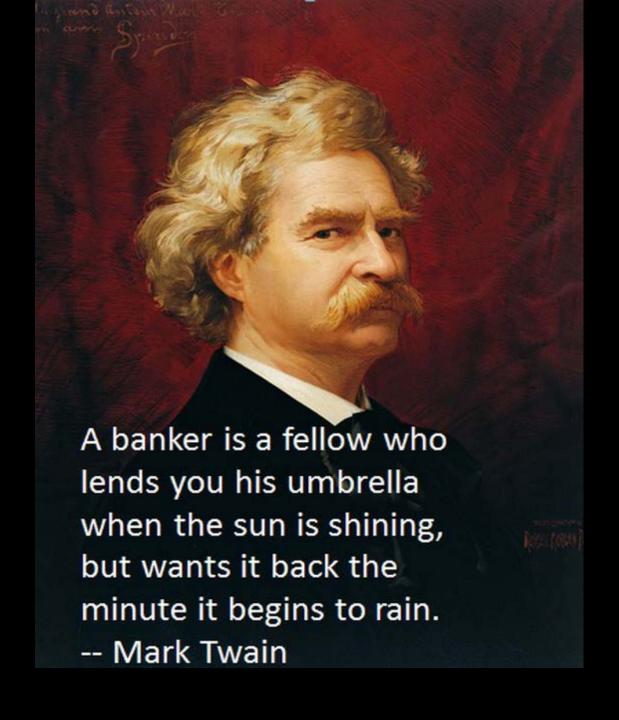
 Moves N from the legume plant to the non-legume plant

The Nature and Property of Soils, Brady and Weil

1996 Added Corn to the Rotation

Lesson #3

Diversity.


Again...

1997 Drought

And yet again...

NEVER EVER GIVE UP!

Cowpea & Sudan Grass

Lesson #4

• Living root in the soil as long as possible throughout the year.

Livestock Integration

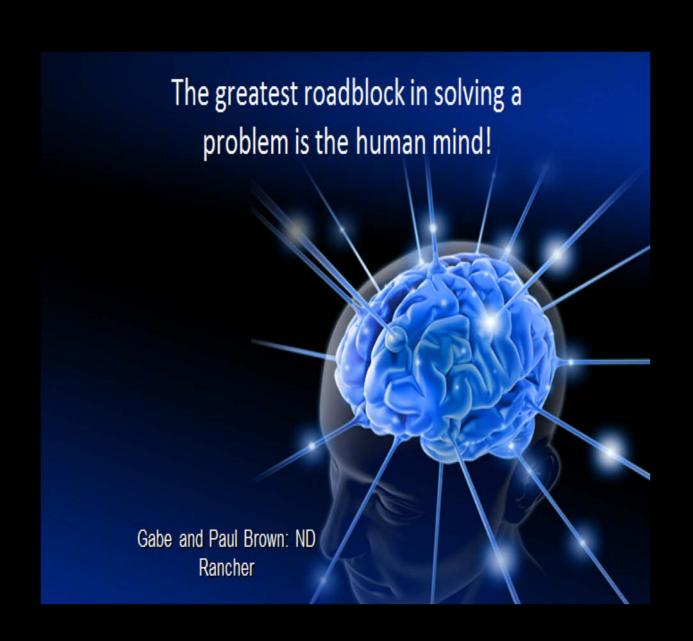
Lesson #5

Animal integration

Tracking Organic Matter...

Upward Trend

1999


•Oats .99 cents/bu.

Lesson #6

• Financial reward is up to you.

 "If you want to make small changes, change how you do things. If you want to make major changes, change how you SEE things!"

Don Campbell

How Did Our Operation Grow Soils?

•Simply By Following The Principles Of Nature!!!

Nature's Way

- No mechanical disturbance
- Armor on the soil surface
- Cycles water
- Living plant-root networks
- Nutrient cycling via biology
- Thousands of years of R & D

Greatest Geological Force: LIFE!

Photosynthesis

- Plants take in CO2
- Photosynthesis occurs
- Converted to sugars, amino acids and other compounds
- A portion of this is translocated to the roots
- Exuded into the soil

Liquid Sun: Roots leaking exudates!

Soil is a living, breathing, sub-aquatic ecosystem.

Plant Exudates

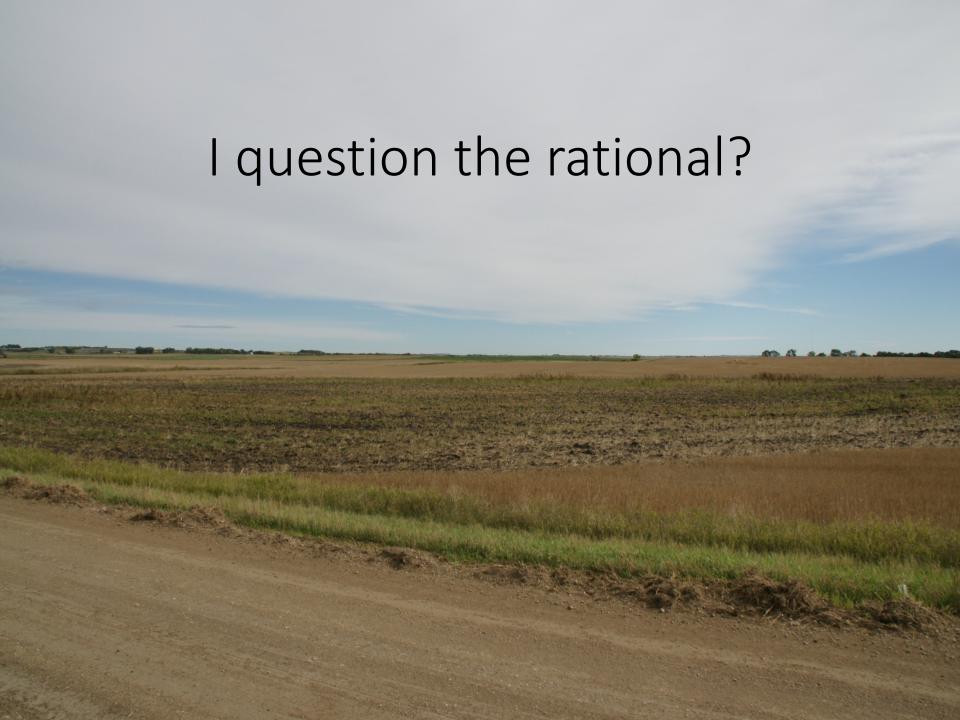
- A large part of this is consumed by microbes
- Part is converted to carbonic acid
- This mild acid breaks down rocks, OM, etc.. Helping to make nutrients available for the plants.

Sympton octure 0.2 -0.2 0.3 0.3 -0.5 0.6 0.7 Forest SOM = 4. 0.7 20 cm 0.8 0.8 0.9 0.9 (a)

onoculture

• In order to advance soil health we must reduce tillage.

1994 Purchased A 750 No-till Drill



•The amount of moisture one receives is IRRELEVANT!

•What is relevant is EFFECTIVE rainfall!

•EFFECTIVE rainfall is the amount that can be infiltrated and stored in the soil.

1/2" of rainfall cannot infiltrate

June 15, 2009

Adequate Infiltration: 13.6" in 22 Hours

Spaces Are Essential For Biology And Water Infiltration

Too Much Or Too Little

 If you have too much water you need to increase your crop intensity to use more water, in other words grow covers!!

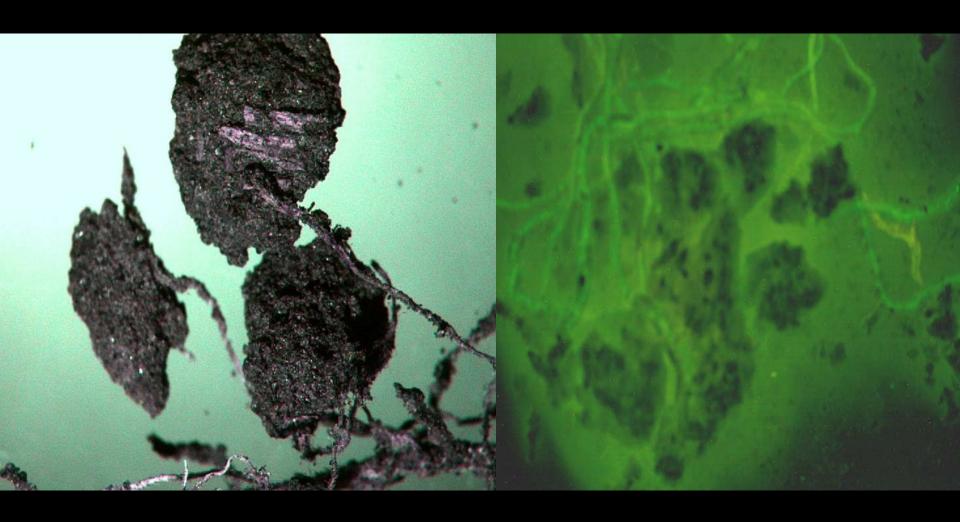
• If you do not have enough water you need to increase the water holding capacity of your soils, in other words grow covers!!

 This is only going to happen with good soil aggregation/structure.

 One must have high populations of mycorrhizal fungi!

2003 Dr. Kris Nichols

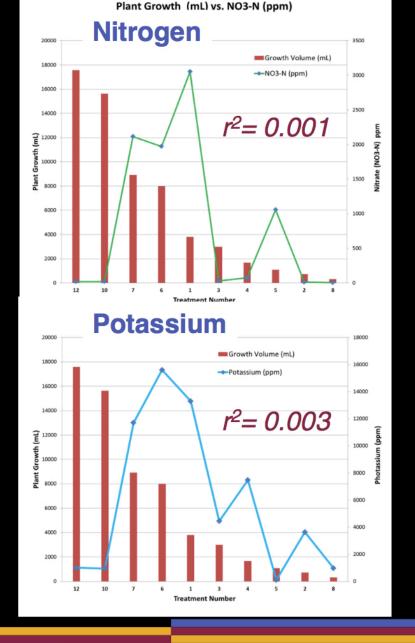
"Your soils will never become sustainable as long as high rates of synthetic fertilizers are used"

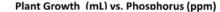


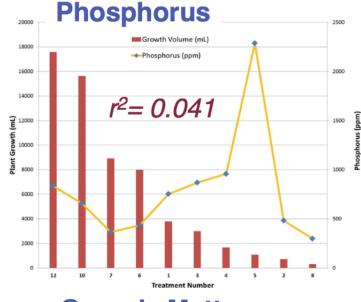
- •We Eliminated All Synthetic Fertilizer On Our Owned Land in 2008
- On Rented Land In 2010

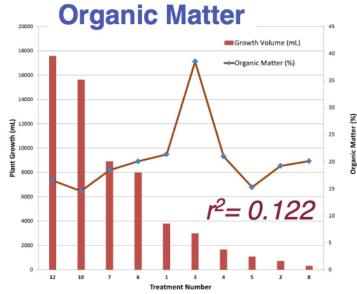
 We noticed an immediate improvement in the aggregation of our soils when I removed synthetic fertilizers.

Enlarged Soil Aggregates


Glomalin and hyphae




Dr. Kris Nichols, Microbiologist, ARS, Mandan, ND



F:B Ratio

Soil Foodweb Analysis

Report prepared for:

Burleigh Co. Soil Conservation

Vicki Bailey

1511 E. Interstate Avenue

Bismarck, ND 58503-0560 US

(701) 250-4363

vicki bailev@nd nacdnet net

Report Sent: 07/29/2005 Sample#: 01-100980

Unique ID:

Plant: Wheat

Invoice Number: 8357

Sample Received: 07/14/2005

For interpretation of this report please contact: Local Advisor:

or regional lab

Soil Foodweb, Inc

info@soilfoodweb.com

(541) 752-5066

Consulting fees may apply

VIONI. DUITO Y COLLIC	idodilot.iiot	our ipio	JOI 1 OG. 017 1 17 E OG			
Organism Biomass Data	Dry Weight	Active Bacterial (µg/g)	Total Bacterial (µg/g)	Active Fungal (µg/g)	Total Fungal (µg/g)	Hyphal Diameter (µm)
Results	0.850	44.2	2243	7.02	205	2.5
Comments	In Good Range	Excellent	Excellent	Low	Good	
Expected Low	0.45	15	100	15	100	
Range High	0.85	25	300	25	300	

WHITE ALL	Protozoa Numbers/g			Total Nematodes	Percent Mycorrhizal Colonization	
THE STATE OF	Flagellates	Amoebae	Ciliates	#/g	ENDO	ЕСТО
Results	5020	2520	32	1.98	2%	0%
Comments	Low	Low	Low	Low	Low	Low
Expected Low	10000	10000	50	20	40%	40%
Range High			100	30	80%	80%

Organism Biomass Ratio	Total Fungal to Total Bacterial	Active to Total Fungal	Active to Total Bacterial	Active Fungal to Active Bacterial	Plant Available N Supply
Results	0.09	0.03	0.02	0.16	25-50
Comments	Low	Low	Low	Low	
Expected Lo	w 0.8	0.25	0.25	0.75	
Range Hi	gh 1.5	0.95	0.95	1.5	

Nematodes per Gram of Soil Identification to genus

acterial Feeders	
Acrobeles	0.13
Acrobeloides	0.04
Cephalobus	0.18
Eucephalobus	0.04
Panagrolaimus	0.04
Rhabditidae	0.2

Fungal Feeders		
Eudorylaimus		0.04
Mesodorylaimus		0.13
Microdorylaimus		0.04
Fungal/Root Feeders		
Aphelenchoides	Foliar nematode	0.04
Aphelenchus		0.27
D:// 1	Ctare 9 Dulb nametodo	0.10

Ditylenchus	Sterii & Build Herriatoue	0.10
Filenchus		0.04
Root Feeders		
Helicotylenchus	Spiral nematode	0.04
Meloidogyne	Root-Knot nematode	0.09
Paratylenchus	Pin nematode	0.09

Soil Foodweb Analysis

Report prepared for:

Burleigh Co. Soil Conservation Vicki Bailey

1511 E. Interstate Avenue

Bismarck, ND 58503-0560 US

(701) 250-4363

vicki.bailey@nd.nacdnet.net

Report Sent: 07/29/2005 Sample#: 01-100984

Unique ID: GB1

Plant: Com
Invoice Number: 8357

Sample Received: 07/14/2005

For interpretation of this report please contact:

Local Advisor: or regional lab

Soil Foodweb, Inc info@soilfoodweb.com

(541) 752-5066

Consulting fees may apply

Nematodes per Gram of Soll Identification to genus

Aphelenchus

Ditylenchus

Filenchus

TIONIDUITO TOUTION	HUOUTIOLITICE	our ipic i	OCIVOU. OTT THEOD	u	1	
Organism Biomass Data	Dry Weight	Active Bacterial (µg/g)	Total Bacterial (µg/g)	Active Fungal (µg/g)	Total Fungal (µg/g)	Hyphal Diameter (µm)
Results	0.850	46.3	405	5.24	274	2.5
Comments	To Wet	Excellent	Excellent	Low	Good	
Expected Low	0.45	15	100	15	100	
Range High	0.85	25	300	25	300	

	Protozoa Numbers/g		Total Nematodes	Percent Mycorrhizal Colonization		
	Flagellates	Amoebae	Cillates	#/g	ENDO	ECTO
Results	178500	9736	331	4.45	31%	0%
Comments	High	Low	High	Low	Low	Low
Expected Low	10000	10000	50	20	40%	40%
Range High	HATCH SHE	THE REPORT	100	30	80%	80%

Organism Biomass Ratios	Total Fungal to Total Bacterial	Active to Total Fungal	Active to Total Bacterial	Active Fungal to Active Bacterial	Plant Available N Supply
Results	0.68	0.02	0.11	0.11	200+
Comments	Low	Low	Low	Low	
Expected Low	0.8	0.25	0.25	0.75	
Range High	1.5	0.95	0.95	1.5	

Bacterial Feeders Acrobeles 0.81 Acrobeloides Cephalobus 0.45 Cervidellus 0.18 Rhabditidae 0.45 Fungal Feeders Eudorylaimus 0.09 Fungal/Root Feeders Foliar nematode 0.54 Aphelenchoides

Stem & Bulb nematode

728 SW Wake Robin Avenue Corvallis, OR 97333 USA
(541) 752-5066 | info@soilfoodweb.com

www.spilfoodweb.com

0.45

0.54

0.09

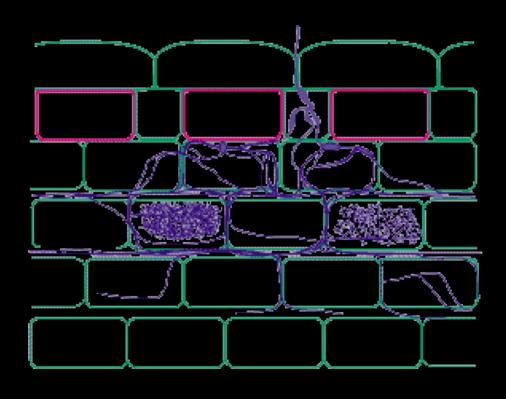

Mycorrhizal Fungi and Biology Build Soil Aggregates

Photo courtesy Aberdeen Mycorrhiza Research Group

AMF – Protect their host plants from pathogens and nematodes in the soil

Mycorrhizal Friendly Species

- Oats
- Barley
- •Flax
- Clovers
- Sunflowers

2) Armor On The Soil

Disrupted Soil Ecosystem

Dysfunctional Soil Ecosystem-Crust

Soil Temperatures

Residue buffers August heat

SOIL TEMPERATURES

- 70 Degrees: 100% of moisture can be used for growth.
- 100 Degrees: 15% of moisture is used for growth, 85% is lost to evaporation and transpiration.
- 130 Degrees: 100% of moisture is lost through evaporation and transpiration.
- 140+ Degrees: Soil Biology is severely affected.

3) Diversity

2006 Dr. Ademir Calegari

"Cover crops should be seeded as multi-species cocktails"

2006 Burleigh Co. ND

Turnip July 31

Oilseed Radish July 31

Cover Crop Mix July 31

Production On District Plot

Oilseed Radish
 1260 Lbs.

Purple Top Turnip 1513 Lbs.

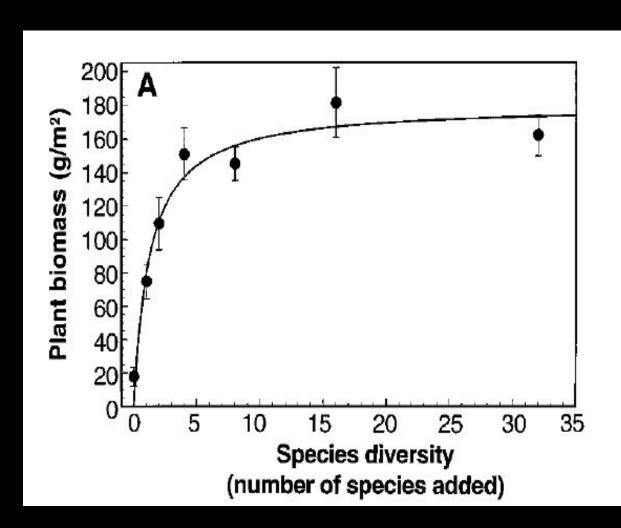
Pasja Turnip
 2070 Lbs.

• Soybean 1496 Lbs.

• Cowpea 1914 Lbs.

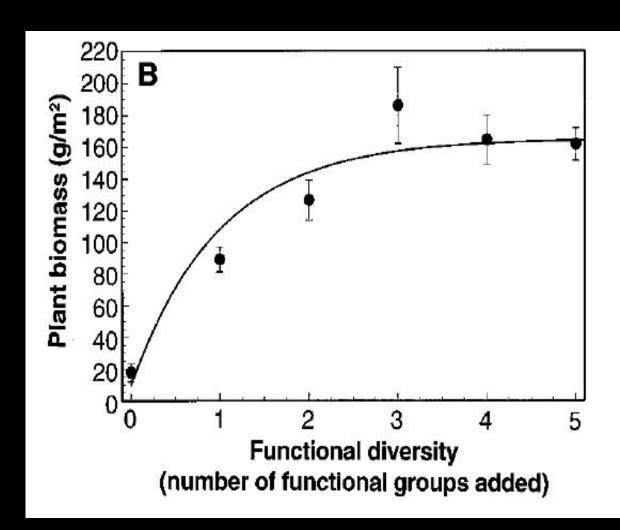
• Lupin 1232 Lbs.

Cocktail Mix (1/2 Rate) 4785 Lbs.


Cocktail Mix (Full Rate) 4350 Lbs.

- "Not only do the fungi provide for the needs of one plant but the fungal/hyphae pipeline connect to multiple plants... This helps satisfy the nutritional and energy needs of microorganisms and the plants"
- Dr. Kris Nichols, ARS Mandan, ND

Monocultures: A Detriment to Soil Health



The Influence of Functional Diversity and Composition on Ecosystem Processes

The Influence of Functional Diversity and Composition on Ecosystem Processes

- A key strategy in sustainable agriculture is to restore functional biodiversity of the agricultural landscape (Altieri, 1994).
- Biodiversity performs key ecological services and if correctly assembled in time and space can lead to agroecosystems capable of sponsoring their own soil fertility, crop protection and productivity. (Altieri, 1994)

Optimizing Solar Energy Collection

- Increasing Photosynthetic:
- Capacity
- Rate

Diversity Drives Soil Health

Brown's Ranch Cash Crops

Wheat - CSG **Hairy Vetch – CSB** Oats - CSG Peas - CSB **Triticale - CSG** Barley - CSG Rye - CSG Sunflower - WSB Corn - WSG Millet-WSG

Diversity in the Cropping System

Fall Seeded Biennials

Winter Triticale/ Hairy Vetch

Income	Expense
--------	----------------

• Yield: 55 x \$7.00 =\$385.00

• Yield: 450# x \$1.75=\$787.50

• Total Income: \$1,172.50

Land Cost: \$50.00

Seed: 40.

Seeding: 24.

Herbicide: 24.

Combining: 35.

Trucking: 6.

Storage: 18.

Cleaning: 26.

Marketing Labor: 32.50

Total Expenses: \$257.50

Net Profit/Acre \$915.00

Oats

Income		Expense	
• Yield:	112	Land Cost:	\$50.
		Seed:	\$16.
Price/bu.:	\$5.50	C/C Seed:	4.45
• Total Crop Income:	\$588.	Seeding: Herbicide:	24. 23.
	•	Combining:	25. 25.
Grazing Income:	\$110.	Trucking:	22.40
 Total Income: 	\$698.	Storage:	11.20
rotar irreorne.	7030.	Cleaning:	15.
		Marketing Labor:	25.
		Total Expenses:	\$216.05

Net Profit/Acre: \$481.95

Cost of Production Including Land Cost 2008-2018

- •Corn \$1.44/bu
- •Oats .97
- •Peas 2.78
- •Wheat 1.82

Yields: 2008-2018

Brown's

County Average

• Corn

127

• 98

Spring Wheat 62

• 39

Oats

112

• 62

Barley

72

• 48

Cropland Acres

- We Grow Cash Crops on 70-80% of Our Cropland Acres Every Year.
- On Those Acres We Also Grow a Cover Crop Either Before, Along With or After the Cash Crop.
- The Other 20-30% Is Double Crop Cover Crop, grazed by livestock.

New Paradigm

- Oats
- Barley
- Peas
- Flax
- Lentils

\$\$\$

• I will take profit over yield any day!

4) Living Root As Long As Possible

Never Pass Up The Opportunity To Cycle Carbon

- It All Begins With Photosynthesis!
- The More Photosynthesis, The More Liquid Carbon Being Pumped Into The System!

Brown's Ranch Cover Crops

Annual Ryegrass – CSG

Oats - CSG

Barley – CSG

Winter Triticale – CSG

Forage Winter Wheat - CSG

Rye - CSG

Canola – CSB

Crimson Clover - CSB

Berseem Clover - CSB

Radish – CSB
Turnip – CSB

Persian Clover - CSB

Lentil – CSB

Hairy Vetch - CSB

Sweet Clover – CSB
Phacelia – CSB

Winter Pea - CSB

Collards - CSB

Sub Clover – CSB

Buckwheat - CSB

Kale – CSB

Flax - CSB

Hybrid Pearl Millet - WSG

German Millet - WSG

Sorghum/Sudangrass - WSG

Brown Millet - WSG

Egyptian Wheat - WSG

Teff - WSG

Sugarbeet – WSB

Cowpea – WSB

Soybean - WSB

Sunn Hemp - WSB

Ethiopian Cabbage - WSB

Safflower - WSB

Fava Bean - WSB

Mung Bean - WSB

Cover Crops Designing for your resource concern!

Resource Concerns

Provide crop diversity Provide soil surface armor Build soil aggregates Improve the water cycle Integrated Pest Management Build soil organic matter **Nutrient cycling** Enhance pollinators Adjust carbon/nitrogen ratios Wildlife winter food & shelter Livestock integration

Cover Crop Seed

Diversity!

- Sunflower
- Sorghum/Sudangras
- German Millet
- Soybean
- Cowpea
- Kale
- Radish
- Turnip
- Sunn Hemp
- Safflower
- Buckwheat
- Fava Bean

Persian Clover

Berseem Clover

Hairy Vetch

Hybrid Pearl Millet

Crimson Clover

White Millet

Oats

Flax

Optimizing Solar Energy Collection

Cover Crop 9/14

Roots: Build OM, and Cycle Nutrients

March June

Figure 1. Root systems of annual wheat (on the left in each panel) and intermediate wheat-grass, a perennial, at four times of the year. Although roughly 25% to 40% of the wheat-grass root system dies off and must grow back each year, its longer growing season, and consequently greater access to resources, results in greater above- and belowground productivity than its annual counterpart.

Photograph by Jim Richardson

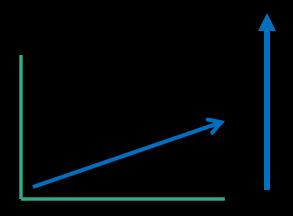
Organic Matter and Available Water Capacity Inches of Water/One Foot of Soil

Percent SOM	Sand	Silt Loam	Silty Clay Loam
1	1.0	1.9	1.4
2	1.4	2.4	1.8
3	1.7	2.9	2.2
4	2.1	3.5	2.6
5	2.5	4.0	3.0

Berman Hudson

Journal Soil and Water Conservation 49(2) 189-194

March – April 1994


Summarized by:

Dr. Mark Liebig, ARS, Mandan, ND

Hal Weiser, Soil Scientist, NRCS, Bismarck, ND

Soil Organic Matter

1993 1.7 to 1.9% Present 5.3 to 7.9%

Value of SOM

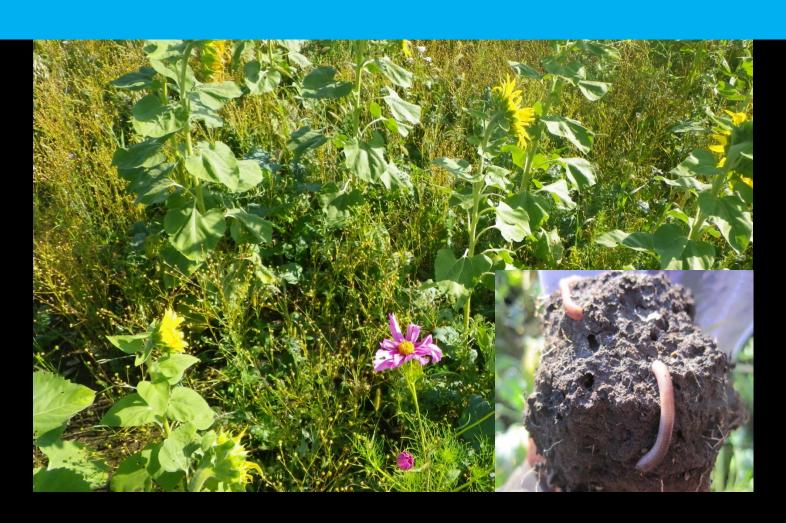
Assumptions: 2,000,000 pounds of soil in top 6".

1% OM = 20,000 pounds.

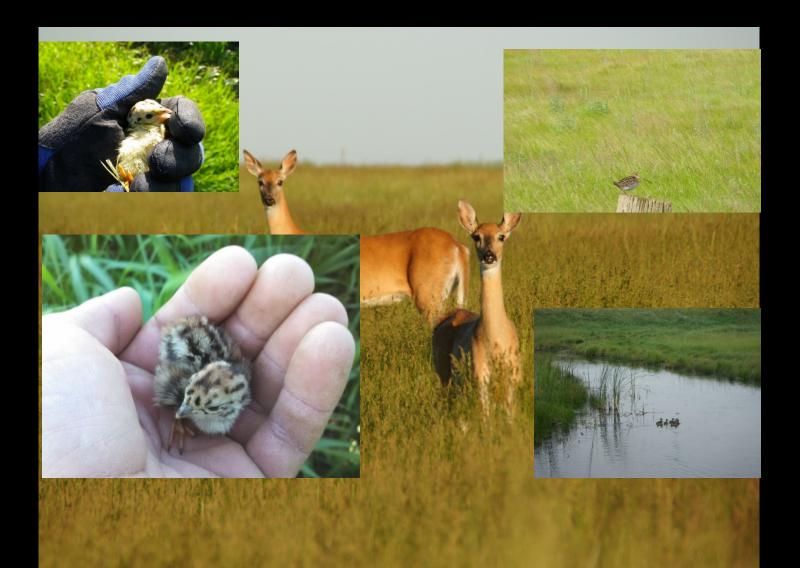
Nutrients:

Nitrogen: 1000# \$.56/lb. N = \$560

Phosphorus: 100# \$.67/lb. P = \$ 67

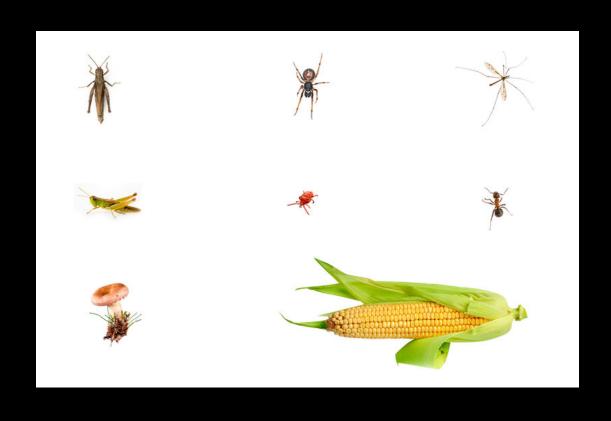

Potassium: 100# \$.54/lb. K = \$ 54

Sulfur: 100# \$.50/lb. S = \$ 50


Value of 1% SOM nutrients/acre = \$731

5% SOM = \$3,655

Feeding the Whole



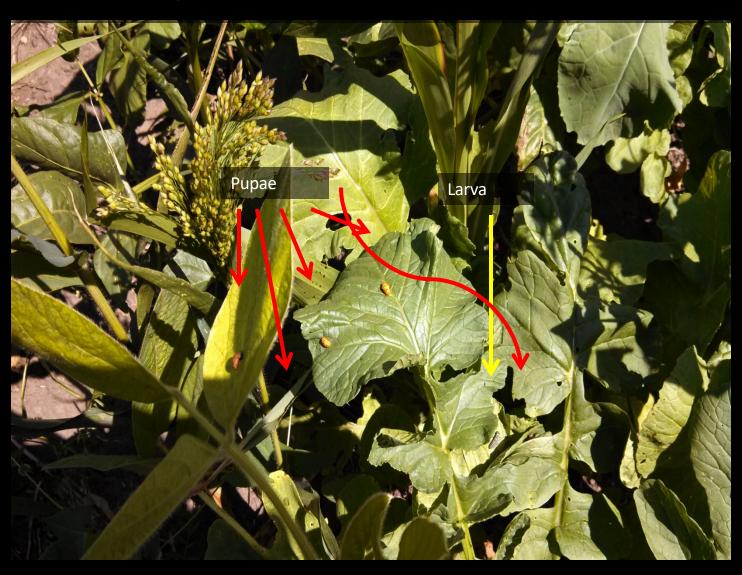
Wildlife!

Iowa Cornfield

Native Prairie

- The Reason Producers Have Pest Problems Is Because Of A Lack Of DIVERSITY!
- •(No Home For The Predators)

Fruit Trees



Lady Beetles (Predators)

Predators

Hister beetles

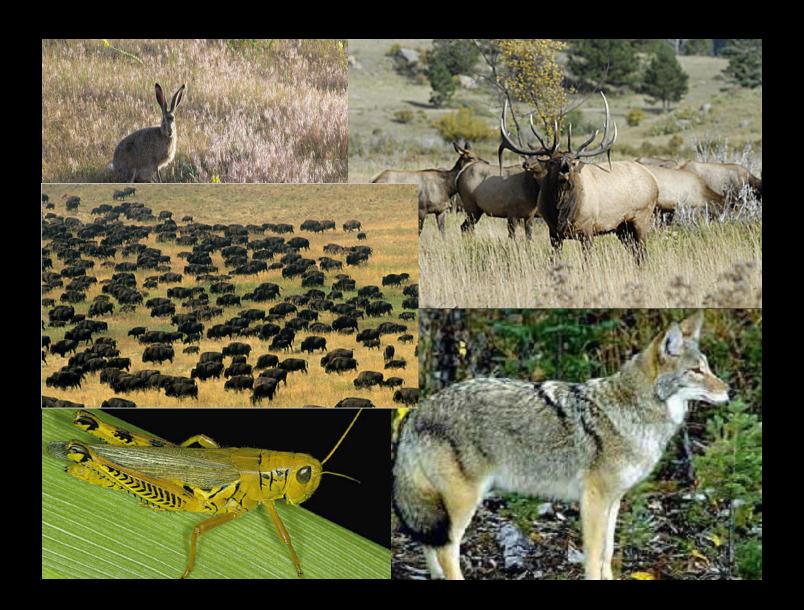
Rove beetles (Ontholestes cingulatus)

For Every Insect Species That Is A Pest, There Are 1,700 Species That Are Beneficial!

- We Have Not Used A Pesticide Since Before The Turn Of The Century With The Exception Of Treated Seed Corn And That Was Discontinued In 2010.
- No Need To As The Predator Insects Take Care Of The Pests For Us!

Build it... they will come!

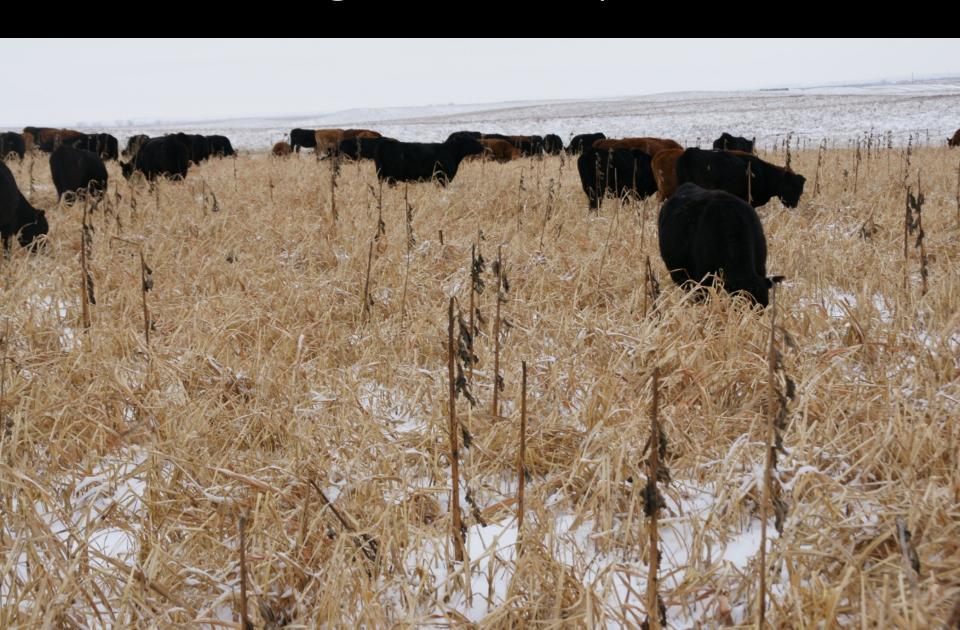
162,000 weed seeds/ 1 sq. meter of a farm field. 137,000 to 161,000 predators per acre of corn canopy.


Approximately 10 percent of weed seeds are eaten per day by Millipedes, Small crickets, Isopods, Field Crickets an Carabid Beetles.

Jan 9, 2015. Dr. Jonathan Lundgren SD ARS/USDA.

5) Animal Impact

Diverse Primer Ready To Graze



Converting Cover Crop to Dollars

2013

Brown's Ranch

Topsoil Depth

3"

1993

No-till

1.7% OM

1995

2.0% ON

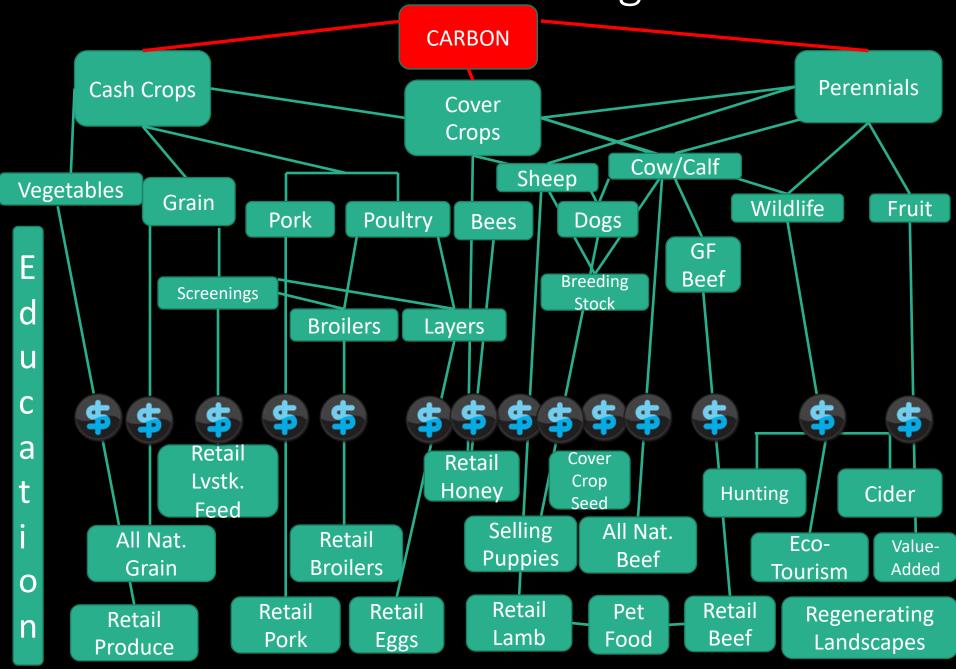
Plot including high diversity of plants, livestock and Cash Crop carbon. Diversity High nutrient

11.1% OM

densities

Carbon

 Carbon is the key driver for the nutritional status of plants---and therefore the mineral density in animals and people.


 Carbon is the key driver for soil moisture holding capacity.

CARBON is the key driver for farm PROFIT!

• I used to wake up every morning trying to decide what I was going to kill that day; a weed, a pest, a fungus...

 Now I wake up every morning trying to decide how I can get more LIFE on my ranch! It is much more fun working with LIFE than death!

Soil-Water-Sunlight

 It's not change that we are looking for, it's understanding; through understanding, change will occur.

Questions?

Diminished Water Cycle

