"History" of Interest in Soil Health

Ray Ward, Ward Labs & Paul Jasa, Nebraska Extension

Home About Estimator Contact Us

You are here: Home / Step 2: Crop Zone / Step 3: Fuel

Search USDA

Go

Energy Tools

- ▶ How were estimates made?
- , Why are some of the estimates blank?
- What are the assumptions?
- b Want a more accurate estimation?
- ▶ Tillage definitions

Other Resources

- b Link to your Local NRCS Office
- NRCS Programs in NE
- ▶ NRCS Energy Information
- ▶ USDA Energy Information
- ▶ Energy in Agriculture
- December Conservation Technology Information Center
- Private Land Owner Network

Feedback

Comment on Energy Estimator: Tillage

Step 3: Fuel Consumption and Cost

The fuel use estimates are based on per acre fuel uses found in the literature on typical cropping & tillage systems in your area. These estimates are based on field conditions that existed in test trials cited in the literature. An example of the literature which supplied fuel consumption usage is "Estimating Farm Fuel Requirements" by H.W. Downs and R.W. Hansen (http://www.ext.colostate.edu/PUBS/FARMMGT/05006.html)

Total Diesel Fuel Consumption Estimate (in gallons per year)

	Сгор	Acres	Conventional Till	Mulch Till		
[Details]	Corn	500	2,699	2,264	2,245	1,565
[Details]	Soybeans - wide row	500	2,619	2,184	1,730	1,165
	Total Fuel Use		5,318	4,448	3,975	2,730
	Potential Annual Fuel Savings over Conventional Tillage			870	1,343	2,588
	Savings			16%	25%	49%

Fuel use estimates are based on average field and equipment conditions, average fertilizer and pesticide applications, and normal crop yields. They do not include: fuel use associated with trips to your fields and farm-to-market transport, irrigation, and, grain drying. They also do not consider differences in fuel use associated with crop yields, soil texture, slope, field size and shape, implement width, tractor size, tire inflation or driving techniques. Your actual fuel use may vary significantly from the value presented.

To see a differenct cost estimate, change the diesel fuel cost per gallon and click the Recalulate button.

Diesel fuel cost per gallon: \$ |3.00

Recalculate

Total Diesel Fuel Cost Estimate (in dollars per year) based on \$3.00/gallon

	Сгор	Acres	Conventional Till	Mulch Till		No Till
[Details]	Com	500	\$8,099	\$6,794	\$6,735	\$4,695
[Details]	Soybeans - wide row	500	\$7,859	\$6,554	\$5,190	\$3,495
	Total Fuel Cost		\$15,954	\$13,344	\$11,925	\$8,190
	Potential Annual Fuel Savings over Conventional Tillage			\$2,610	\$4,029	\$7,764

Total Diesel Fuel Consumption Estimate (in gallons per year)

	Стор	Acres	Conventional Till	Mulch Till	Ridge Till	No Till
[Details]	Com	500	2,699	2,264	2,245	1,565
[Details]	Soybeans - wide row	500	2,619	2,184	1,730	1,165
	Total Fuel Use		5,318	4,448	3,975	2,730
	Potential Annual Fuel Savings over Conventional Tillage			870	1,343	2,588
	Savings			16%	25%	49%

Conventional to No-till Fuel Savings 49% 2.59 gpa \$7.76/A

Wind Erosion

No-till Education in China

April 25 to May 1, 2010

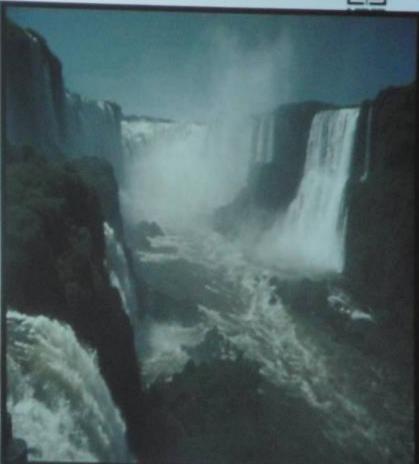
"When you look at China you see a country that seems to be in the driver's seat economically. Yet it has to feed 1.2 billion people and is harvesting 80% of its corn crop by hand and transporting it via small carts and wagons."

Don Hutchens, Executive Director, Nebraska Corn Board

Irrigation and No-till Education in Turkey October 2009 & June 2010

No-till Education in Ukraine

November 2004 August 2005 July 2011 June 2012



Before and after

Photos: Rolph Derpsch

Cover crops provide carbon biomass to protect and build the soil

This is how a long term no-till soil looks

This is how no-till looks like after seeding

(Derpsch, 2005)

This is how no-till looks a few weeks later

(Derpsch, 2005)

